Properties of Parallel Lines

A transversal is a line that intersects two coplanar lines at two distinct points.

Alternate interior angles are nonadjacent interior angles that lie on opposite sides of the transversal. $\angle 3 \& \angle 5$ and $\angle 2 \& \angle 8$ are alternate interior angles.

Same-side interior angles are angles that lie on the same side of the transversal t and between m and n. $\angle 2$ & $\angle 5$ and $\angle 3$ & $\angle 8$ are same-side interior angles.

Corresponding angles lie on the same side of the transversal t and in corresponding positions relative to m and n. $\angle 1 \& \angle 5$, $\angle 2 \& \angle 6$, $\angle 4 \& \angle 8$ and $\angle 3 \& \angle 7$ are corresponding angles.

Corresponding Angles Postulate (CAP)

If a transversal intersects two parallel lines, then corresponding angles are congruent. $\angle 1 \cong \angle 5$; $\angle 2 \cong \angle 6$; $\angle 4 \cong \angle 8$; and $\angle 3 \cong \angle 7$

Alternate Interior Angles Theorem (AIAT)

If a transversal intersects two parallel lines, then corresponding angles are congruent. $\angle 3 \cong \angle 5$ and $\angle 2 \cong \angle 8$

Same-Side Interior Angles Theorem (SSIAT)

If a transversal intersects two parallel lines, then same-side angles are supplementary. $m\angle 2 + m\angle 5 = 180$ and $m\angle 3 + m\angle 8 = 180$

Proof of Alternate Interior Angles Theorem (AIAT)

Prove: $\angle 2 \cong \angle 8$

Steps	Reasons
1. $m//n$	Given
2. $\angle 2 \cong \angle 4$	Vertical Angles Theorem (VAT)
3. $\angle 4 \cong \angle 8$	Corresponding Angles Postulate (CAP)
4. $\angle 2 \cong \angle 8$	Transitive Property of Congruence

Proof of Same-Side Interior Angles Theorem (SSIAT)

Given: m//n and t is a transversal

Prove: $\angle 2$ and $\angle 5$ are supplementary

Steps	Reasons
1. <i>m</i> // <i>n</i>	Given
2. $\angle 1 \cong \angle 5$	Corresponding Angles Postulate (CAP)
3. $m \angle 1 = m \angle 5$	Definition of Congruence
4. $\angle 1$ and $\angle 2$ are adjacent supplementary	Given
angles	
5. $m \angle 1 + m \angle 2 = 180$	Definition of Supplementary Angles
6. $m \angle 5 + m \angle 2 = 180$	Substitution
7. $\angle 2$ and $\angle 5$ are supplementary angles	Definition of Supplementary Angles

Proving Lines Parallel

(In this case, we will be given two lines cut by a transversal and we will be proving that the two lines are parallel)

Converse of Corresponding Angles Postulate (CCAP)

If two lines and a transversal form corresponding angles that are congruent, then the two lines are parallel.

m//n since the corresponding angles 4 and 8 are congruent.

Converse of Alternate Interior Angles Theorem (CAIAT)

If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel.

Proof of Converse of Alternate Interior Angles Theorem (AIAT)

Given: lines *m* and *n* are cut by transversal *t* and $\angle 2 \cong \angle 8$

Prove: m // n

Steps	Reasons
1. lines <i>m</i> and <i>n</i> are cut by transversal <i>t</i> and	Given
$\angle 2 \cong \angle 8$	
2. $\angle 4 \cong \angle 2$	Vertical Angles Theorem (VAT)
$3. \angle 4 \cong \angle 8$	Transitive Property of Congruence
4. $m // n$	Converse of Corresponding Angles Postulate
	(CCAP)

Converse of Same-Side Interior Angles Theorem (CSSIAT)

If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are parallel.

Proof of Converse of Side Interior Angles Theorem (CSSIAT)

Given: lines *m* and *n* are cut by transversal *t* and $\angle 3$ and $\angle 8$ are supplementary

Prove: m // n

Steps	Reasons
1. lines <i>m</i> and <i>n</i> are cut by transversal <i>t</i> and	Given
$\angle 3$ and $\angle 8$ are supplementary	
2. $m \angle 3 + m \angle 8 = 180$	Definition of Supplementary Angles
3. $\angle 3$ and $\angle 4$ are adjacent supplementary	Given
angles	
4. $m \angle 3 + m \angle 4 = 180$	Definition of Supplementary Angles
5. $m \angle 3 + m \angle 8 = m \angle 3 + m \angle 4$	Substitution/Transitive Property
6. $m \angle 8 = m \angle 4$	Subtraction Property of Equality (SPE)
7. $\angle 8 \cong \angle 4$	Definition of Congruence
8. <i>m</i> // <i>n</i>	Converse of Corresponding Angles Postulate
	(CCAP)

Theorem:

If two lines are parallel to the same line, then they are parallel to each other.

Proof:

Given: m//o and n//o and a transversal t

Prove: m // n

Steps	Reasons
1. $m/(o \text{ and } n/(o \text{ and a transversal } t)$	Given
2. $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$	Corresponding Angles Postulate (CAP)
3. $\angle 1 \cong \angle 3$	Transitive Property
4. $m // n$	Converse of Corresponding Angles Postulate
	(CCAP)

Theorem: In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

Prove: m // n

Steps	Reasons
1. $m \perp o$ and $n \perp o$	Given
2. $\angle 1$ and $\angle 2$ are right angles	Definition of Perpendicular Lines
3. $\angle 1 \cong \angle 2$	All right angles are congruent
4. $m // n$	Converse of Corresponding Angles Postulate
	(CCAP)

Parallel Lines and the Triangle Angle-Sum Theorem

Triangle Angle-Sum Theorem (TAST)

The sum of the measures of the angles of a triangle is 180.

Proof of Triangle Angle-Sum Theorem (TAST)

Given: triangle ABC

Prove: $m \angle A + m \angle B + m \angle C = 180$

Steps	Reasons
1. triangle ABC	Given
2. construct parallel lines <i>m</i> and <i>n</i> containing side AC and vertex B	Construction (Given a line and a point not on the line, it is possible to construct the line containing the points and parallel to the given line)
3. $\angle A \cong \angle D$; $\angle C \cong \angle F$	Alternate Interior Angles Theorem (AIAT)
4. $m \angle A = m \angle D$; $m \angle C = m \angle F$	Definition of Congruence
5. $\angle XBY$ is a straight angle	Given
6. $m \angle XBY = 180$	Definition of a Straight Angle
7. $m \angle D + m \angle B + m \angle F = m \angle XBY$	Angle Addition Postulate
8. $m \angle A + m \angle B + m \angle C = 180$	Substitution

Classifications of Triangles According to Angles

- 1. *Equiangular* all angles are congruent
- 2. *Acute* all angles are acute
- 3. *Right* one right angle
- 4. *Obtuse* one obtuse angle

Classification of Triangles According to Sides

- 1. *Equilateral* all sides are congruent
- 2. *Isosceles* at least two sides congruent
- 3. *Scalene* n0 sides congruent

An *exterior angle* of a polygon is an angle formed by a side and an extension of an adjacent side.

For each exterior angle of a triangle, the *remote interior angles* are the two non adjacent interior angles.

In the figure above, $\angle D$ is an exterior angle and its two remote interior angles are $\angle B$ and $\angle C$.

Triangle Exterior Angle Theorem (TEAT)

The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

Proof of Triangle Exterior Angle Theorem (TEAT)

Given: Triangle ABC with exterior angle D

Prove: $m \angle D = m \angle B + m \angle C$

Steps	Reasons
1. triangle ABC with exterior angle D	Given
2. $\angle A$ and $\angle D$ are adjacent supplementary	Given
angles	
3. $m \angle A + m \angle D = 180$	Definition of Supplementary Angles
4. $m \angle A + m \angle B + m \angle C = 180$	Triangle Angle Sum Theorem (TAST)
5. $m \angle A + m \angle D = m \angle A + m \angle B + m \angle C$	Substitution/Transitive Property
6. $m \angle D = m \angle B + m \angle C$	Subtraction Property of Equality (SPE)

The Polygon Angle-Sum Theorem

A *polygon* is a closed plane figure with at least three sides that are segments. The sides intersect only at its endpoints and no adjacent sides are collinear.

Number of Sides	Name
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon/Septagon
8	Octagon
9	Nonagon
10	Decagon
11	Undecagon
12	Dodecagon
n	n-gon

Polygons can be classified according to the number of its sides.

Polygons can be classified as convex or concave.

- 1. *Concave* if the polygon has no diagonal with points lying outside the polygon
- 2. *Concave* if the polygon has at least one diagonal with points lying outside the polygon.

Polygon Angle-Sum Theorem (PAST)

The sum of the measures of the angles of a an n-gon is (n-2)180.

Proof Polygon Angle-Sum Theorem (PAST): (By Mathematical Induction)

Number of Sides	Number of Triangles	Sum of the measure
	Formed	of Angles
3	1	180 = 1(180)
4	2	360 = 2(180)
5	3	540 = 3(180)
6	4	720 = 4(180)
n	n-2	(n-2)180

Polygon Exterior Angle-Sum Theorem(PEAST)

The sum of the measures of the exterior angles of a polygon, one at each vertex, is 360.

Proof of Polygon Exterior Angle-Sum Theorem(PEAST)

Let us consider a triangle, Given: Triangle ABC with exterior angles D, E and F

Prove: $m \angle D + m \angle E + m \angle F = 360$

Steps	Reasons
1. Triangle ABC with exterior angles D, E and F	Given
2. $\angle A$ and $\angle D$, $\angle B$ and $\angle E$, and $\angle C$ and $\angle F$ are adjacent	Given
supplementary angles	
3. $m \angle A + m \angle D = 180$	Definition of Supplementary
	Angles
4. $m \angle B + m \angle E = 180$	Definition of Supplementary
	Angles
5. $m \angle C + m \angle F = 180$	Definition of Supplementary
	Angles
6.	Addition Property of Equality
$m \angle A + m \angle B + m \angle C + m \angle D + m \angle E + m \angle F = 180 + 180 + 180$	(APE)
7. $m \angle A + m \angle B + m \angle C = 180$	Triangle Angle-Sum Theorem
	(TAST)
8. $180 + m \angle D + m \angle E + m \angle F = 180 + 180 + 180$	Substitution
9. $m \angle D + m \angle F + m \angle F = 360$	Subtraction Property of
	Equality (SPE)

This is true for any polygon.

Lines in the Coordinate Plane

0		
Equation of a line		
Slope-intercept form	y = mx + b	<i>m</i> is the slope
		b is the y-intercept
Point-Slope form	$y - y_1 = m(x - x_1)$	<i>m</i> is the slope
		(x_1, y_1) is a given point
Two-Point Form	$y_{-} y_{-} = y_{2} - y_{1} (x - x)$	$\frac{y_2 - y_1}{y_1}$ is the slope
	$y - y_1 - \frac{1}{x_2 - x_1} (x - x_1)$	$x_2 - x_1$
		(x_1, y_1) is a given point
Standard form	Ax + By = C	$-\frac{A}{2}$ is the slope
		B
		C_{i}
		$\frac{-}{B}$ is the y-intercept
General Form	Ax + By + C = 0	A is the slope
		B B B
		$C_{is the v-intercent}$
		B

The following are the forms of a line:

Two lines are said to be parallel if the slopes of the line are equal but their y-intercepts are not equal. That is, given $y = m_1x + b_1$ and $y = m_2x + b_2$, if $m_1 = m_2$ and $b_1 \neq b_2$, then the two lines are parallel.

Two lines are said to be perpendicular of the products of their slopes is -1. That is, given $y = m_1 x + b_1$ and $y = m_2 x + b_2$, if $m_1 \cdot m_2 = -1$, then the two lines are parallel.

Constructing Parallel and Perpendicular Lines

Constructing Parallel Lines given a line and a point not on the line.

- 1. Draw a line that will contain the given point and will intersect the given line. (An angle will be formed by these two lines)
- 2. Using the compass, construct an arc that will intersect the line formed in #1 and the given line. Mark these points of intersection.
- 3. Using the same compass measurement in #2, construct an arc where the compass end will be positioned at the given point.
- 4. Adjust the compass opening in order to measure the points of intersection obtained from #2.
- 5. Using the same compass opening, draw an arc that will intersect the arc obtained in #4. Mark the point of intersection.
- 6. Connect the result of the point obtained in #5 and connect it with the given line.

Constructing Perpendicular Lines Given a Line and a Point on the Line

- 1. Place the compass end at the given point. Choose a compass opening and draw arcs on both sides of the line. Mark the points of intersection.
- 2. Choose a compass opening and construct arcs by placing the compass end at the points that resulted from #1. Mark the point of intersection.
- 3. Connect the result of #2 and the given point.

Constructing Perpendicular Lines Given a Line and a Point not on the Line

- 1. Place the compass end at the given point. Choose a compass opening and construct an arc that will intersect the given line twice. Mark the points of intersection.
- 2. Choose a compass opening and construct arcs by placing the compass end at the points that resulted from #1. Mark the point of intersection.
- 3. Connect the result of # 2 and the given point.