

Isosceles triandeges are common il the real world. We can find them in streuctures such as bridges and buildings. The congrucht sides of an isosceles treiangle gre its legs.. The third side is the brse. The two congruent sides from the vertex angle The other two angles are the base angiles.

Steps

Reasons

Isosceles triangle $A B C$ with legs $A B$ and $B C$.

Given
Def of isosceles triangle
Construction

Def. Of angle bisector
Reflexive Prop. SAS Post. CPCTC

Steps

Reasons
Triangle $A B C$ with congruent angles A and C
Construct ray $B D$, the angle bisector of angle $A B C$

$\angle \mathrm{ABD} \cong \angle \mathrm{CBD}$

$\mathrm{BD} \cong \mathrm{BD}$
$\triangle A B D \cong \triangle C B D$
$A B \cong B C$

Steps

Reasons

Triangle $A B C$ with congruent angles A and C
Construct ray $B D$, the
Construction angle bisector of angle $A B C$

$\angle \mathrm{ABD} \cong \angle \mathrm{CBD}$

Given

$B D \cong B D$

$\triangle A B D \cong \triangle C B D$
Def. Of angle bisector Reflexive Prop. AAS Post. $A B \cong B C$

CPCTC

Steps

Reasons

Isosceles triangle $A B C$ with legs $A B$ and $B C$.

Given
Def of isosceles triangle
Construction

Def. Of angle bisector
Reflexive Prop. SAS Post.
CPCTC

Steps

Reasons

Given ABC
$\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}} \cong \overline{\mathrm{AC}}$
Def of an equilateral triangle
$\angle \mathrm{C} \cong \angle \mathrm{A} \cong \angle \mathrm{B}$
Triangle $A B C$ is equiangular

Isosceles Triangle Theorem
Def. Ofan equiangular triangle

Steps

Reasons

Equiangular triangle ABC
$\angle \mathrm{C} \cong \angle \mathrm{A} \cong \angle \mathrm{B}$
Given
Def. Of an equiangular triangle
$\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}} \cong \overline{\mathrm{AC}}$

Triangle $A B C$ is equiangular

Converse of
Isosceles Triangle Theorem
Def of an equilateral triangle

