Congruence in Right Triangles

In a right triangle, the side opposite the right angle is the longest side and is called the **hypotenuse**. The other two legs are called **legs**. Right triangles provide a special case for which there is an SSA congruence rule. It occurs when hypotenuse are congruent and one pair of legs are congruent.

Hypotenuse-Leg (HL) Theorem If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.

P		NO MARCHO	REA
	Steps	Reasons	3
	Ríght tríangles ABC	Gíven	S.J
į	and DEF with right		00.
A	angres Caup		Lot
	$\angle ACB \cong \angle DFE$		0
3		congrueni	X
-	$AC \cong DF; AB \cong DE$	Given	60
Ø	Triangle BAF/BDF is		
	an isosceles triangle	tríangle	D
2	$\angle B \cong \angle E$		125
5		Theorem	6
1e	$\Delta ACB \cong \Delta DFE$	AAS Theorem	Ser.
-			

yy-

2

5

2

1

K

P

d all part

1		NO SO DO DO	ho!
	Steps	Reasons	
	Ríght tríangles ABC and DEF with ríght angles C ad F	Gíven	
	$\angle ACB \cong \angle DFE$	All ríght angles are congruent	0
	$\overline{AC} \cong \overline{DF}; \overline{AB} \cong \overline{DE}$	Gíven	
1	Tríangle BAF/BDF ís an ísosceles tríangle	Def of an ísosceles tríangle	
2	$\angle B \cong \angle E$	Isosceles Tríangle Theorem	(C)
3	$\Delta ACB \cong \Delta DFE$	AAS Theorem	S

50

-

0

-K

10

1

6 10

5

1.12

Μ

К

